Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430UB0-1

Z22-3430UB0-1

FRIDAY, 17 JUNE 2022 – AFTERNOON

SCIENCE (Double Award)

Unit 2 – CHEMISTRY 1 HIGHER TIER

1 hour 15 minutes

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	9					
2.	6					
3.	6					
4.	10					
5.	6					
6.	6					
7.	8					
8.	9					
Total	60					

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

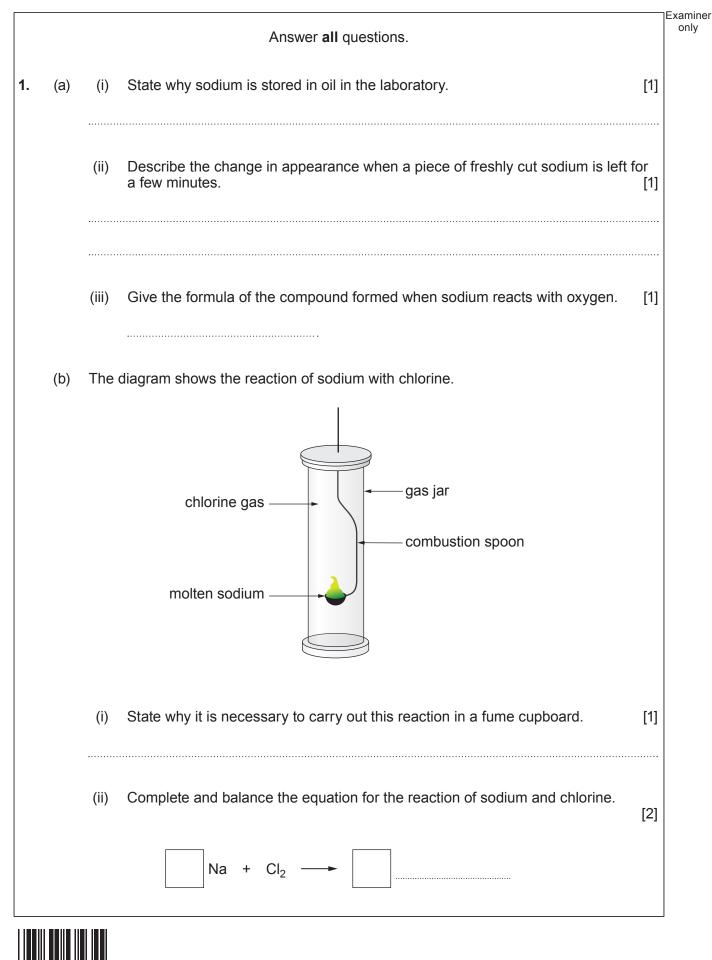
INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

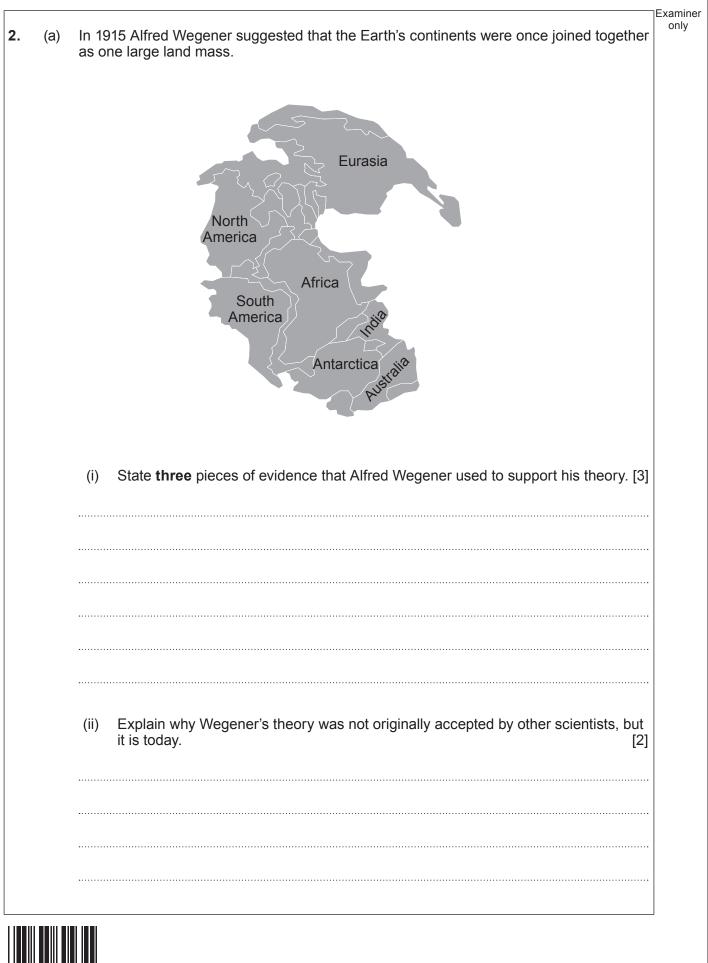
INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

Question **5** is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

2



3430UB01 03

Element	Melting point (°C)	Boiling point (°C)	Reaction with hot iron
fluorine	-220	-188	explosive
chlorine	-101	-34	very fast
bromine	-7	59	quite fast
iodine	114		slow
	h hot iron. eason for your answer.		

(b)	What type of destructive event is likely to happen at a conservative plate boundary? [1]	Examine only	er
		6	
			3430UB01 05
05	© WJEC CBAC Ltd. (3430UB0-1) Turn over.		

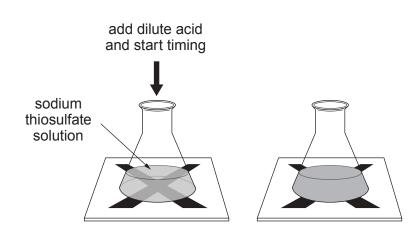
			the elements.	
	Element	Electror	ic structure	
	A		2	
	В		2,6	
	C		2,8,1	
	D	2	2,8,7	
	E		2,8	
	F		2,8,6	
(a) 		s found in Group 6 and Per rring to electronic structure A–F are chemically inert?		ible? [2]
	Explain your choice, refer	rring to electronic structure		
	Explain your choice, reference Which two of elements A Explain your choice, reference Element D has two isotop	rring to electronic structure	ons and isotope 2 has 2	[2] [2] 20 neutrons.
(b)	Explain your choice, reference Which two of elements A Explain your choice, reference Element D has two isotop	rring to electronic structure A-F are chemically inert? rring to electronic structure bes. Isotope 1 has 18 neutr	ons and isotope 2 has 2	[2] [2] 20 neutrons.
b)	Explain your choice, reference Which two of elements A Explain your choice, reference Element D has two isotop Complete the table by give	rring to electronic structure A-F are chemically inert? rring to electronic structure bes. Isotope 1 has 18 neutr ving the atomic number and	ons and isotope 2 has 2 d mass number of both i	[2] [2] 20 neutrons.

3430UB01 07

BLANK PAGE

7

PLEASE DO NOT WRITE ON THIS PAGE



© WJEC CBAC Ltd.

Examiner only

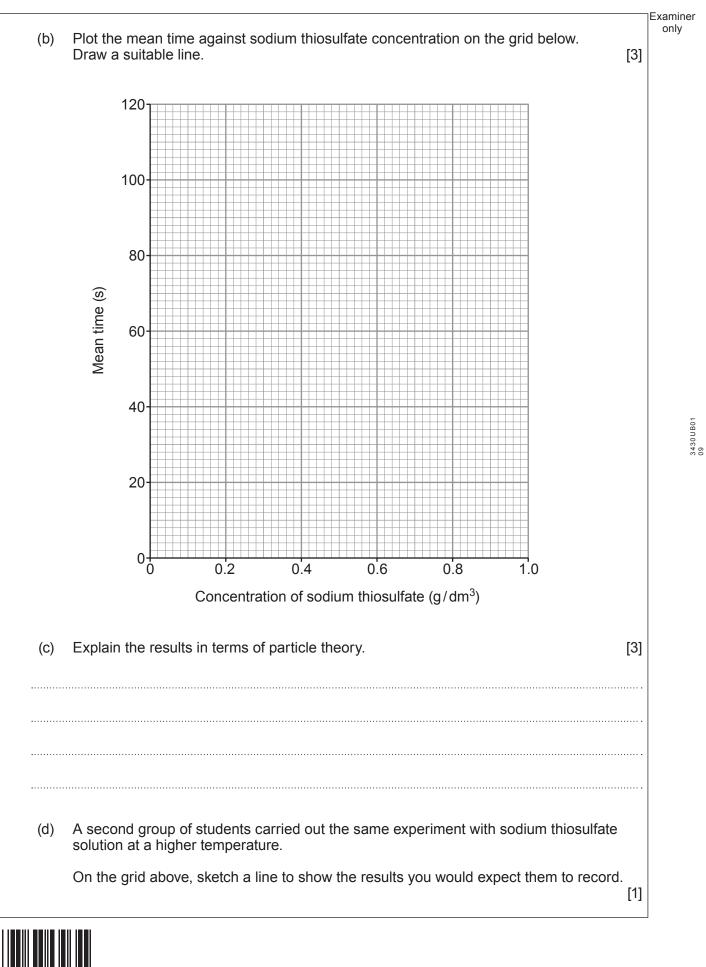
4. Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate. The precipitate causes the solution to go cloudy.

The rate of the reaction can be measured by placing a cross beneath the flask and measuring the time taken for the cross to disappear.

Gareth and Sion studied the effect of sodium thiosulfate concentration by carrying out the reaction with thiosulfate of five different concentrations. They tested each concentration three times.

Their results are shown in the table below.

Concentration of sodium thiosulfate (g/dm ³)	Time 1 (s)	Time 2 (s)	Time 3 (s)	Mean time (s)
0.2	114	113	112	113
0.4	74	70	72	72
0.6	40	38	57	39
0.8	21	23	22	22
1.0	14	16	15	15


(a) When calculating the mean times, they ignored one of the values recorded.

Circle this value in the table.

[1]

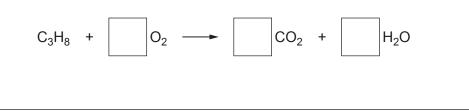
(e)	The stock solution of sodium thiosulfate used in both experiments was made by dissolving 1.0 g of the solid in 1 dm ³ of water.		Examiner only
	Calculate the number of moles of sodium thiosulfate $(Na_2S_2O_3)$ in 1.0 g.		
	Give your answer to two significant figures.	[2]	
	$A_{\rm r}({\rm Na}) = 23$ $A_{\rm r}({\rm S}) = 32$ $A_{\rm r}({\rm O}) = 16$		
	$A_{r}(Na) = 25$ $A_{r}(5) = 52$ $A_{r}(0) = 10$		
	Number of moles =	mol	
			10

3430UB01 11

		∃Examiner
5.	Calcium ions (Ca ²⁺) and magnesium ions (Mg ²⁺) both cause hardness in water. Both can be present in temporary hard water and permanent hard water. It is the other ions present which cause hardness to be temporary or permanent.	only
	State the difference between the composition of temporary hard water and permanent hard water. Describe a method to distinguish between them in the laboratory. Explain how this method works. [6 QER]	
		3430UB01
		6

	tant values.	
(a)	Identify the natural processes that help maintain the balance of oxygen and carbon dioxide levels in the atmosphere. Describe briefly how this is achieved.	[3]

Examiner only


(b) The table shows the amount of carbon dioxide produced by the United States of America and India between 1955 and 2015.

	Carbon dioxide emissions (million tonnes)		
Year	USA	India	
1955	700	100	
1965	800	250	
1975	1150	250	
1985	1150	450	
1995	1150	600	
2005	1400	900	
2015	1300	1850	

Use the information in the table to compare the increase in carbon dioxide emissions in the United States of America and India between 1955 and 2015. [2]

The combustion of the fossil fuel propane (C₃H₈) produces carbon dioxide and water.
Balance the equation for this reaction. [1]

Examiner only

Element	Melting point (°C)	Boiling point (°C)	Density (g/cm³)	Appearance	Malleability	Conductivity	
Na	98	882	1.00	shiny solid	malleable	good	
Mg	650	1091	1.75	shiny solid	malleable	good	
AI	660	2470	2.70	shiny solid	malleable	good	
Si	1410	3265	2.35	shiny solid	brittle	semiconductor	
Р	44	281	1.80	red solid	brittle	poor	
S	113	444	2.05	yellow solid	brittle	poor	
CI	-101	-34	0.003	green gas	n/a	poor	

7. The table shows some properties of elements in Period 3 of the Periodic Table.

(a) One of the elements is difficult to classify as a metal or non-metal.

Identify this element and give your reasoning.

[2]

[2

			Exam
(b)	Tick (\checkmark) two boxes which correctly describe the change in density the elements across Period 3.	y and boiling point for [2]	onl
	The density of metals and non-metals increases		
	The boiling point of metals increases but the boiling point of non-metals shows no trend		
	The density of metals shows no trend but the density of non-metals decreases		
	The boiling point of metals and non-metals shows no trend		
	The density of metals increases but the density of non-metals shows no trend		
	The boiling point of metals shows no trend but the boiling point of non-metals decreases		
	The density of metals decreases but the density of non-metals shows no trend		
(C)	Argon is the next element in Period 3 after chlorine, Cl.		
	State why it is not possible to predict a melting point for argon usi the table.	ng the information in [1]	

(d)	Phos	sphorus is found in phosphoric acid, H_3PO_4 .		Exami only
	(i)	During the production of phosphoric acid, phosphorus is heated to 60 $^\circ$ C.		
		Give the state of phosphorus at 60 °C. Explain your choice.	[2]	
	(ii)	Phosphoric acid reacts with zinc to produce zinc phosphate and hydrogen.	543	
		Balance the equation for this reaction.	[1]	
		$Zn + H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + H_2$		
				8
16				

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Group 1	metal	Electronic structure		Group 2 metal	Electronic structure	
sodium		2,8,1	-	magnesium	2,8,2	
potassium		2,8,8,1		calcium	2,8,8,2	
(a) (i)	Use the	e information to explair	n the tre	end in reactivity dov	wn Group 1.	[2]
(ii)	Use the elemen	e information to explair ts.	1 the dif	fference in reactivit	y of Group 1 and Grou	p 2 [2]
······	elemen	ts.			y of Group 1 and Grou	[2]

(b)	Sodium reacts with water to produce sodium hydroxide and hydrogen. The equation for this reaction is shown.	Examine
	2Na(s) + 2H ₂ O(I)	
	Calculate the mass of addium peopled to produce 11.2 g of hydrogen gap	
	Calculate the mass of sodium needed to produce 11.2g of hydrogen gas. [3] $A_r(Na) = 23$ $A_r(H) = 1$	
	$A_r(Na) = 25$ $A_r(\Pi) = 1$	
	Mass of sodium =	3
	Group 2 metals react in a similar way with water as Group 1 metals.	
(C)	The word equation for the reaction of calcium and water is shown.	
	calcium + water — - calcium hydroxide + hydrogen	
	Write the balanced symbol equation for this reaction. [2]	
		9
	END OF PAPER	
19	© WJEC CBAC Ltd. (3430UB0-1) Turn over	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH4 ⁺	carbonate	CO3 ²⁻
barium	Ba ²⁺	chloride	CI
calcium	Ca ²⁺	fluoride	F ⁻
copper(II)	Cu ²⁺	hydroxide	OH⁻
hydrogen	H⁺	iodide	1-
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
iron(III)	Fe ³⁺	oxide	O ²⁻
lithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		-
nickel	Ni ²⁺		
potassium	K ⁺		
silver	Ag⁺		
sodium	Na ⁺		
zinc	Zn ²⁺		

Argon

35.5 CI Chlorine

Phosphorus As As 8b

Silicon 6ermanium

 $\begin{array}{c|c} & 27 \\ \text{Aluminium} \\ 13 \\ 13 \\ 13 \\ 31 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 110$

Rn

At At Astatine

PO

Bi Bismuth

Pb 16ad

TI

Au Gold

Ta [antalum

Hf Hafnium

> Ra Radium

Zn Hg Hg

Co Rhodium

Fe Iron Osmium

Manganese Reenium

Cr Chromium

/anadium

Titanium Crconium

Magnesium Calcium Ba Barium

THE PERIODIC TABLE Group 3 4 Hydrogen

 2 Helium 2

~

ဖ

S

Neon

F Fluorine

O

Nitrogen

C Carbon

Boron

© WJEC	CBAC	Ltd.

Be Beryllium

Li .ithium Key Ar Symbol Name z _____ atomic number